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The usefulness of a simple dyadic equation, generally overlooked, of Patterson for specifying symmetry 
relations among structure factors is emphasized and restated in matrix notation for convenience of appli- 
cation. 

The task of generalizing the symmetry subroutine of a com- 
puter program for direct solution of the phase problem has 
emphasized to the author the unfortunate fact that in the lit- 
erature of structure analysis the discussion of phase relations 
among symmetrically equivalent reflections is fragmented 
and generally unsatisfactory. The deficiency of Vol. I of 
International Tables for X-ray Crystallography (1952) in this 
regard is notorious; it specifies all relations for each of the 
triclinic, monoclinic, and orthorhombic space groups but 
only some of the relations for higher symmetries, without 
so much as noting the absence of the others. The specifica- 
tions are given in a rather awkward manner according to 
the even or odd character of the sums of indices for various 
groups of reflections. The most useful and modern of the 
texts on crystal-structure analysis are also deficient; they 
either ignore the subject, dismiss it with a reference to 
International Tables, or treat it so obscurely as to make ap- 
plication difficult. It seems to have been generally over- 
looked that Patterson (1952), in a perhaps too succinct dis- 
cussion incidental to a paper on another subject, derived in 
dyadic notation the simple equation needed to identify 
symmetry-related reflections and to specify the phase rela- 
tions among them. The equation is restated here in matrix 
notation for convenience of application. 

Consider the expression S for any given symmetry oper- 
ator of a space group such that 

x ' - S x - A x + t ,  (1) 

where x and x'  are the column matrices of fractional (con- 
travariant) coordinates x ~ of a given point and x '~ of the 
symmetrically related point, A is the matrix of the operator 
for the proper or improper rotation involved, and t is the 
column matrix of translational components t ~. (In each sym- 
bol where it appears the superscript i takes the values 1, 2, 
and 3.) The equations 

F(.~,- lh) = F(hA-I) = exp{2nihA-lt}F(h) (2) 

and 

F(~da) = F(hA) = exp{-  2niht}F(h) (3) 

correspond to equations (5a) and (5b) in Patterson's paper 
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and are appropriate for the structure factor defined as 
F(h) =Xf~v(h)exp{2nilax~v}. In these equations h is the column 

n 
matrix of reflection indices h,k,l and each supercript tilde 
(-) over the symbol for a matrix denotes the transpose of 
that matrix. By either equation (2) or equation (3) each 
symmetry operation of the space group identifies a struc- 
ture factor related to F(h) and specifies the phase relation 
through the translational components t ~. These equations 
are mathematical expressions corresponding to geometrical 
arguments given earlier (Buerger, 1949; see also Buerger, 
1960). Because every space group includes for each opera- 
tion given by equation (1) the reciprocal operation 

S - l x = A - l x - A - l t ,  (4) 

equations (2) and (3) are equivalent and only one of them 
is needed. Since in the general case the operation of trans- 
posing a matrix is simpler than inverting it, equation (3) is 
to be preferred over equation (2); and only equation (3) will 
be used in the subsequent discussion here. 

To each symmetry operator S of the space group (in- 
cluding the identity operator) there corresponds one triplet 
of transformed coordinates x'l ,  x'2, x'3 in the set of general 
positions of the space group. For a given operator S the 
element A~j of the matrix A is the coefficient of xJ in the 
expression for x'~; the element t ~ of t is the translational 
part of x '~. Thus the matrices required for use in equation 
(3) are available from International Tables (1952), and the 
equation is easily applied. The matrix multiplications are 
very simple to program for electronic computing. 

For centrosymmetric space groups the entire set of equiv- 
alences may be generated with equation (3) by use of the 
whole set of operators S of the group, or, perhaps more 
conveniently, by first using only those symmetry operators 
not related by inversion and then using the relation 
F ( -  h , -  k, - l) = F(h,k,l) for each F(h,k,l) of the interme- 
diate set. For noncentrosymmetric space groups all the op- 
erators S are used, and the phases of the Friedel mates are ob- 
tained, to the approximation of Friedel's law, by reversing the 
signs of the phase angles. In the case of the conventional 
centered space groups the symmetry operation related to a 
given one by the centering operation only need not be con- 
sidered along with the given one, as its use leads only to a 
redundant relation. Redundant relations will in general be 
generated for reflections whose reciprocal-lattice points lie 
on symmetry elements. 
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Discussions in the literature by others,* some of whom 
were evidently unaware of Patterson's treatment, have in 
general contributed little toward understanding of the sub- 
ject. Waser (1955) added an embellishment by pointing out 
that to obtain all of the independent relations among the 
structure factors one need consider only those symmetry 
operators S whose rotational components generate the 
point group isomorphous with the space group and that one 
can, therefore, derive all independent relations from the 
Hermann-Mauguin symbol cf  the space group. The entire 
set of symmetry relations for a given structure factor can be 
deduced by appropriate repetitive use of the independent 
relations. 

Unfortunately, Waser's paper may mislead the uninitia- 
ted user of Patterson's equation. Waser rederives Patter- 
son's dyadic equation by a slightly different method; con- 
sistent with the dyadic notation, the discussion under his 
Example is presented in terms of point operations. Matrices 
are not even mentioned. However, the discussion, especially 
the last sentence, may easily be taken to imply that in 
general the matrix to be used in equation (3) above is A-1 
instead of the correct A. Waser's dyadic equation h . A =  
A-X.h requires transposing the corresponding matrix A, 
not inverting it. The reader not already familiar with dyadic 
notation should be able to use the discussion on dyadics 
of Patterson (International Tables, 1959, p. 57), especially 
his transformation tables, to verify that this last statement 
is true. The essential point is that the matrix A-~, from the def- 
inition of A in equation (1), is in general an appropriate sym- 
metry operator only for the fractional (contravariant) coor- 
dinates x ~. From the well-known transformation rules for base 
vectors, fractional coordinates, and indices (summarized, for 
example, in International Tables, 1952, p. 16), the matrix 
is the matrix appropriate for transforming the indices (co- 
variant coordinates) according to the same point operation 
that is represented by A-~ as a multiplier of x. In brief, 
represents in reciprocal space the inverse of the point opera- 
tion represented by A in direct space. The matrices ,g, and 
A-~ are related by the equation 

= gA-lg-1,  (5) 

where g is the matrix whose general element gzj is a~.aj, the 
dot product of the base vectors a~ and aj of the crystal lat- 
tice, and g-l,  the reciprocal of g, is the matrix whose general 
element g~J is a ~. aJ, the dot product of two reciprocal base 
vectors. Equation (5) follows from the fact that g-~ trans- 
forms covariant coordinates to contravariant and g does the 
reverse (International Tables, 1959, p. 56). 

Instead of restating the result of a dyadic derivation, one 
may of course derive equation (3) using matrix methods 
from the beginning. The procedure exactly parallels that of 
Waser except that the matrix operations hx, l~t, and i~A are 
used in place of the dyadic operations h-r, h.t,  and h .A 
in Waser's equations. ,.~ 

Since the equality of the conjugate dyadic. Ac and the 
reciprocal dyadic A-1 is emphasized by Was er [see also 
Zachariasen, 1945, equation (2.5b)] as the condition which 
ensures invariance of distances under a linear transforma- 
tion, it is of interest to show that equation (5) is a matrix 

* Some papers not specifically cited here are cited in the 
various references given. 

expression of this condition for the particular case of a 
symmetry transformation. The square of the distance be- 
tween two points a and b defined by column matrices ax and 
bx is given by ( b x -  ax)g( b x -  "x); the corresponding square 
for the two points related to a and b by a rotation A is 
( ~ -  ax)AgA(bx- ~x). If  the two distances are to be equal, 

then 

g=  AgA. (6) 

This condition, which corresponds to Zachariasen's equa- 
tion (2.15), is easily transformed to 

A-1 = g-l~i.g (7) 

and to equation (5). 
Equation (7) reduces to A-I=.Z,, that is to say, A is or- 

thogonal, when .g, commutes with g (or with g-~), as is the 
case for each of the rotational operations of space group 
Pn3n used in the Example of Waser. The relation A-1 = 
is obviously true for all operations of the triclinic, mono- 
clinic, and orthorhombic groups, for which the matrices are 
all diagonal. The crystallographic matrices A which are not 
orthogonal are those which contain four non-zero ele- 
ments; such matrices are associated only with some symmetry 
operations of hexagonal space groups and of trigonal space 
groups referred to hexagonal axes. 

For an example of a symmetry operation in which A does 
not equal A-l,  one may consider space group P3~21 and the 
point g,y-x,~--z, equivalent to x,y,z. The matrices A and 
are (T00/ll0/00"i') and (Ti'0/010/001-), respectively, and A-1 
= A. By equation (3), the phase relation is 

F ( -  h -  k,k, - l) = exp{-  ~nil} F(h,k,l). 

The procedure for finding symmetry relations emphasized 
by Bertaut & Waser (1957) and later by Bertaut (1964) was 
not explained in terms of the simple matrix formulation of 
equation (3); however, the procedure is mathematically 
equivalent to the direct application of this equation. 

I thank Dr H. A. Levy and Professor J. Waser for helpful 
criticism of earlier versions of the manuscript. 
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